Back To Back Mosfet



Back to back fet

A solid state relay (SSR) is an electronic switching device that switches on or off when an external voltage (AC or DC) is applied across its control terminals. It serves the same function as an electromechanical relay, but has no moving parts and therefore results in a longer operational lifetime. SSRs consist of a sensor which responds to an appropriate input (control signal), a solid-state electronic switching device which switches power to the load circuitry, and a coupling mechanism to enable the control signal to activate this switch without mechanical parts. The relay may be designed to switch either AC or DC loads.

The AUIR3241S is a high side Mosfet driver for back to back topology targeting back to back switch. It features a very low quiescent current both on and off state. The AUIR3241S is a combination of a boost DC/DC converter using an external inductor and a gate driver. It drives standard level Mosfet even at. That's because in the other direction the current flows through the intrinsic diode across the MOSFET, and there is no way to turn that off. When the voltage on the left is higher that the voltage on the right: the right MOSFET is 'connected backwards', it has its intrinsic diode forward biased, so it conducts regardless (it can't be controlled).

Packaged solid-state relays use power semiconductor devices such as thyristors and transistors, to switch currents up to around a hundred amperes. Solid-state relays have fast switching speeds compared with electromechanical relays, and have no physical contacts to wear out. Users of solid-state relays must take into consideration an SSR's inability to withstand a large momentary overload the way an electromechanical relay can, as well as their higher 'on' resistance.

Coupling[edit]

The control signal must be coupled to the controlled circuit in a way which provides galvanic isolation between the two circuits.

Many SSRs use optical coupling. The control voltage energizes an internal LED which illuminates and switches on a photo-sensitive diode (photo-voltaic); the diode current turns on a back-to-back thyristor (TRIAC), SCR, or MOSFET to switch the load. The optical coupling allows the control circuit to be electrically isolated from the load. See opto-isolator for more information about this isolation technique.

Back To Back Fet

Operation[edit]

An SSR based on a single MOSFET, or multiple MOSFETs in a paralleled array, can work well for DC loads. MOSFETs have an inherent substrate diode that conducts in the reverse direction, so a single MOSFET cannot block current in both directions. For AC (bi-directional) operation two MOSFETs are arranged back-to-back with their source pins tied together. Their drain pins are connected to either side of the output. The substrate diodes are alternately reverse biased to block current when the relay is off. When the relay is on, the common source is always riding on the instantaneous signal level and both gates are biased positive relative to the source by the photo-diode.

It is common to provide access to the common source so that multiple MOSFETs can be wired in parallel if switching a DC load. Usually a network is provided to speed the turn-off of the MOSFET when the control input is removed.

In AC circuits, SCR or TRIAC relays inherently switch off at the points of zero load current. The circuit will never be interrupted in the middle of a sine wave peak, preventing the large transient voltages that would otherwise occur due to the sudden collapse of the magnetic field around the inductance. With the addition of a zero-point detector (and no adverse circuit inductance and resultant back-e.m.f.), the individual SCR's can be switched back on at the start of a new wave. This feature is called zero-crossover switching.

Parameters[edit]

SSRs are characterised by a number of parameters including the required activating input voltage, current, output voltage and current, whether it is AC or DC, voltage drop or resistance affecting output current, thermal resistance, and thermal and electrical parameters for safe operating area (e.g., derating according to thermal resistance when repeatedly switching large currents). SSRs can also include zero crossing hardware to only turn the voltage on or off when the AC voltage is at zero. Proportional SSRs can delay the onset of voltage after the zero crossing in order to lower the current output (phase angle control).

Advantages over mechanical relays[edit]

Most of the relative advantages of solid state relays over electromechanical relays are common to all solid-state devices when compared to electromechanical devices.

  • Inherently smaller and slimmer profile than mechanical relay of similar specification, allowing tighter packing. (If desired may have the same 'casing' form factor for interchangeability.)
  • Totally silent operation.[1]
  • SSRs switch faster than electromechanical relays; the switching time of a typical optically coupled SSR is dependent on the time needed to power the LED on and off - on the order of microseconds to milliseconds.[1]
  • Increased lifetime, even if it is activated many times, as there are no moving parts to wear and no contacts to pit or build up carbon.[1]
  • Output resistance remains constant regardless of amount of use.
  • Clean, bounceless operation.[1]
  • No sparking, allows it to be used in explosive environments, where it is critical that no spark is generated during switching.
  • Much less sensitive to storage and operating environment factors such as mechanical shock, vibration, humidity, and external magnetic fields.

Disadvantages[edit]

  • Voltage/current characteristic of semiconductor rather than mechanical contacts:
    • When closed, higher resistance (generating heat), and increased electrical noise
    • When open, lower resistance, and reverse leakage current (typically μA range)
    • Voltage/current characteristic is not linear (not purely resistive), distorting switched waveforms to some extent. An electromechanical relay has the low ohmic (linear) resistance of the associated mechanical switch when activated, and the exceedingly high resistance of the air gap and insulating materials when open.
    • Some types have polarity-sensitive output circuits. Electromechanical relays are not affected by polarity.
  • Possibility of spurious switching due to voltage transients (due to much faster switching than mechanical relay)
  • Isolated bias supply required for gate charge circuit
  • Higher transient reverse recovery time (Trr) due to the presence of the body diode
  • Tendency to fail 'shorted' on their outputs, while electromechanical relay contacts tend to fail 'open'.

Gallery[edit]

Solid state contactor.
PCB mount solid-state DIL relay
Back

See also[edit]

References[edit]

  1. ^ abcdAG, Infineon Technologies. 'Solid State Relay - Infineon Technologies'. www.infineon.com. Retrieved 2021-02-03.

External links[edit]

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Solid-state_relay&oldid=1017808938'

by Crutschow, Electro-Tech-Online.com community member

Using Mosfet As A Switch

Here’s a circuit that uses two back-to-back N-MOSFETs and one PNP BJT to form a low-side bipolar switch for either AC or plus/minus DC sources. This has much lower On voltage drop and power loss than a TRIAC (for example a Triac will typically dissipate >10W at 10Arms current whereas the two MOSFETs will dissipate a total of <1W for low ON resistance MOSFETs at the same current).

The circuit also doesn’t latch on with a DC source as a TRIAC does.
It can be used in place of an SSR when the AC/DC voltage source is already isolated from the Mains by a transformer and thus isolation for the control signal is not required.

The circuit takes advantage of the fact that a MOSFET conducts equally well in both directions when biased ON. Two back-to-back N-MOSFETs are used to allow blocking for both polarities of the supply source (otherwise the parasitic MOSFET substrate diode would conduct in the reverse direction.)

The common-base configured PNP allows the positive control voltage to turn on the MOSFETs, but blocks the negative voltages (Vg, purple trace below) that occur at the gate from the gate-source connection when the control signal is 0V (giving Vg,s = 0V) and the supply voltage goes negative.

The input ON control voltage must be equal to the Vgs voltage for which the ON resistance, Rds(on), is specified in the MOSFET spec sheet. This is typically 10V for standard MOSFETs and 5V (or less) for logic-level type MOSFETs.

The maximum allowed peak AC or DC voltage is determined by the voltage ratings of the MOSFETs and the PNP transistor (whichever is lower). For inductive loads, back-to-back zeners or other transient suppressors will need to be used from the drain of M1 to ground, to limit the peak voltage to at least 25% below the ratings of the transistors.

The LTspice simulation below shows the current through the load resistor R_Load, for high (ON) and zero (OFF) input voltages and a 30Vrms AC source voltage. The ON voltage drop equals the load current times twice the ON resistance of the MOSFET type selected.

Back To Back Mosfets

For more information about this circuit design go to Electro-Tech-Online.